

APC Anti-human CD2 Antibody *AHC0031*

Catalog number: 100221C0, 100221C1, 100221C2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

lsotype lgg1

Immunogen CD2 (LFA-2, Erythrocyte R, T11)

Clone AHC0031

Conjugate APC

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with APC under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate APC

Excitation Wavelength 651 nm

Emission Wavelength 660 nm

Applications

AHC0031 is an anti-human monoclonal antibody that recognizes the CD2 antigen. CD2 (also known as T11, SRBC or LFA-3 receptor) is a 45 kD single-pass type I membrane protein that is found on the surface of cells like NK cells and T cells. CD2 has been closely linked to vital biological processes like cell-cell adhesion, especially heterotypic cell-cell adhesion. Also, in certain organisms, it promotes interleukin-8 secretion, plays a role in the upregulation of myeloid dendritic cell activation and is an enhancer of tumor necrosis factor production. CD2 is a member of critical cellular pathways, namely, the cell surface receptor signaling pathway. From a research standpoint, it is of biological interest due to its association with important macromolecules/ligands like CD58. CD2 is a moderately popular antibody target, with over 16000 publications in the last decade. CD2 is essential for costimulatory molecules and immunology research, frequently serving as a phenotypic marker for

ex/em = 651/660 nm). It is	flow cytometric applications compatible with the 642 r	nm laser and 702/85 nr	m bandpass filter (for e	xample, as in the Lumine	x Amnis FlowSight).