

Cell Meter™ 2-NBDG Glucose Uptake Assay Kit

Catalog number: 23500 Unit size: 200 Tests

Component	Storage	Amount
Component A: 2-NBDG (10 mg/mL)	Freeze (<-15 °C), Minimize light exposure	1 vial (100 μL)
Component B: Assay Buffer I	Freeze (<-15 °C), Minimize light exposure	1 bottle (50 mL)
Component C: Assay Buffer II	Freeze (<-15 °C), Minimize light exposure	1 bottle (20 mL)

OVERVIEW

Glucose metabolism, a process which converts glucose into energy, is a primary 2-NBDG in most organisms. source of energy supply [2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose], a fluorescently tagged glucose tracer, has been proven to effectively monitor glucose transportation in cells, as 2-NBDG transports into cells by the same glucose transporters (GLUTs) as glucose. Once 2-NBDG is uptaken in cells, it undergoes phosphorylation at C-6 position to give 2-NBDG-6-phosphate, which is well retained within the cells. Compared to other glucose tracers, such as 2-DG or FDG, 2-NBDG allows in situ measurements of 2-NBDG with high temporal and spatial resolution at single cell level. AAT Bioquest's Cell Meter™ 2-NBDG Glucose Uptake Assay Kit provides a sensitive and non-radioactive assay for measuring glucose uptake in cultured cells. In this kit, Assay Buffer I is used to enhance the uptake and retention of 2-NBDG in cells, while Assay Buffer II can improve the signal-tobackground ratio of 2-NBDG in the cells. The fluorescence signal can be monitored by fluorescence microscope or flow cytometer with a 488 nm laser and 530/30 nm emission filter (FITC channel). Cell Meter™ 2-NBDG Glucose Uptake Assay Kit is the most robust tool for monitoring glucose transporters.

AT A GLANCE

Protocol summary

- 1. Prepare cells with your test compounds
- 2. Add 2-NBDG staining solution
- 3. Incubate cells at 37°C for 20 minutes
- 4. Remove 2-NBDG staining solution
- 5. Wash cells with Assay Buffer I
- Analyze cells using fluorescence microscope or flow cytometer with 530/30 nm filter (FITC channel)

Important Thaw all the components at room temperature before starting the experiment.

KEY PARAMETERS

Instrument:	Fluorescence microscope
Excitation:	FITC filter
Emission:	FITC filter
Recommended plate:	Black wall/clear bottom
Instrument:	Flow cytometer
Excitation:	488 nm laser
Emission:	530/30 nm filter
Instrument specification(s):	FITC channel

PREPARATION OF WORKING SOLUTION

Add 5 μL of 2-NBDG (10 mg/mL) (Component A) to 1.5 mL of Assay Buffer I (Component B) and mix well to make 2-NBDG staining solution. Protect from light.

Note This 2-NBDG staining solution is stable for 1 hour at room temperature. As the optimal staining conditions may vary depending on different cell types, it's recommended to determine the optimal concentration of Component A for each specific experiment.

PREPARATION OF CELL SAMPLES

For guidelines on cell sample preparation, please visit https://www.aatbio.com/resources/guides/cell-sample-preparation.html

SAMPLE EXPERIMENTAL PROTOCOL

 Add test compounds into the cells and incubate for a desired period of time (such as 24, 48 or 96 hours) in a 37°C, 5% CO₂ incubator. For blank wells (medium without the cells), add the same amount of compound buffer.

- 2. At the end of the treatment, centrifuge the plate for 5 minutes at 800 rpm with brake off prior to your experiment.
- 3. Aspirate the supernatant without disturbing cells.
- 4. Add 100 $\mu\text{L/well}$ (96-well plate) or 25 $\mu\text{L/well}$ (384-well plate) of 2-NBDG staining solution.

Note Optimal incubation time will need to be determined for each cell line and for each specific experiment. We incubated CHO-K1 cells at 37°C with 100 μ M 2-NBDG (~34 μ g/mL) for 20 minutes to show sufficient glucose uptake. See Data Analysis for details.

- 5. At the end of the incubation, centrifuge the plate for 5 minutes at 800 rpm.
- 6. Remove 2-NBDG staining solution without disturbing cells.
- 7. For fluorescence microscope: Wash cells with Assay Buffer I (Component B) once. Keep cells in 100 μ L/well (96-well plate) or 25 μ L/well (384-well plate) of Assay Buffer II (Component C). Monitor the fluorescence signal using a fluorescence microscope with FITC filter.
- 8. For flow cytometer: Detach cells if required using EDTA and resuspend cells in 100 μ L/sample of Assay Buffer I (Component B). Monitor the fluorescence signal using a flow cytometer with 530/30 nm filter (FITC channel).

EXAMPLE DATA ANALYSIS AND FIGURES

Figure 1. Fluorescence images of 2-NBDG uptake in CHO-K1 cells using Cell MeterTM 2-NBDG Glucose Uptake Assay Kit. CHO-K1 cells at 40,000 cells/well/100 μ L were seeded overnight in a 96-well black wall/clear bottom plate. Cells were treated with 20 mM Glucose (B) or 100 μ M Phloretin (C) at 37°C for 1 hour, then

Tel: 408-733-1055 | Fax: 408-733-1304 | Email: support@aatbio.com

©2017 AAT Bioquest, Inc. Last revised November 2019. For more information and tools, please visit https://www.aatbio.com

incubated with 100 μM 2-NBDG staining solution for 20 minutes. Untreated control cells were stained under the same conditions. The fluorescence signal was measured using a fluorescence microscope with FITC filter.

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.