OVERVIEW

Mag-Fura-2, AM is an intracellular magnesium indicator that is ratiometric and UV light-excitable. It has the spectral properties that closely match Fura-2. This acetoxymethyl (AM) ester form is useful for noninvasive intracellular loading. It is also used for measuring high level of calcium ion in live cells.

KEY PARAMETERS

Fluorescence microscope
Emission: Fura 2 filter set
Excitation: Fura 2 filter set
Recommended plate: Black wall/clear bottom

Fluorescence microplate reader
Cutoff: 475
Emission: 510
Excitation: 340, 380
Recommended plate: Black wall/clear bottom
Instrument specification(s): Bottom read mode/Programmable liquid handling

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

Mag-Fura-2 AM Stock Solution

1. Prepare a 2 to 5 mM stock solution of Mag-Fura-2 AM in high-quality, anhydrous DMSO.

PREPARATION OF WORKING SOLUTION

Mag-Fura-2 AM Working Solution

1. On the day of the experiment, either dissolve Mag-Fura-2 AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Mag-Fura-2 AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Mag-Fura-2 AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

2. Prepare a 2 to 20 μM Mag-Fura-2 AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Mag-Fura-2 AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

Sample Experimental Protocol

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

1. Prepare cells in growth medium overnight.

2. On the next day, add 1X Mag-Fura-2 AM working solution to your cell plate.

 Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.

3. Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.

 Note: Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.

4. Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.

5. Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a Fura 2 filter set or a fluorescence plate reader containing a programmable liquid handling system such as a FlexStation, at Ex/Em₁ = 340/510 nm cutoff 475 nm and Ex/Em₂ = 380/510 nm cutoff 475 nm.

EXAMPLE DATA ANALYSIS AND FIGURES

Figure 1. Chemical structure for Mag-Fura-2, AM *Cell-permeant*
AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.