

mFluor™ Red 780 Anti-human CD93 Antibody *VIMD2*

Catalog number: 109300W0, 109300W1

Unit size: 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse IgG1

Immunogen CD93 (C1QR1, MXRA4)

Clone VIMD2

Conjugate mFluor™ Red 780

Biological Properties

Appearance Dark blue liquid

Preparation Antibody purified by affinity chromatography and then conjugated with mFluor™ Red 780 under

optimal conditions

Application Flow Cytometry (FACS), Fluorescence Imaging

Spectral Properties

Conjugate mFluor™ Red 780

Excitation Wavelength 629 nm

Emission Wavelength 767 nm

Applications

The VIMD2 monoclonal antibody reacts with human CD93, a 110 kD transmembrane glycoprotein often found on the surface of macrophages, monocytes, endothelial cells, platelets and granulocytes. CD93 is associated with a variety of biologically interesting macromolecules/ligands. CD93 is a fairly uncommon antibody target, with a little more than 1100 publications in the last decade. Even still, CD93 has a variety of

applications in immunology research, frequently serving as a phenotypic marker for differentiating cell types in flow cytometric applications.
This antibody was purified through affinity chromatography and conjugated to mFluor™ Red 780 (ex/em = 629/767 nm). It is compatible with the 637 nm laser and 780/60 nm bandpass filter (for example, as in the Thermo Fisher Attune NxT).