

PE Anti-human CD85j Antibody *GHI/75*

Catalog number: 108511M0, 108511M1, 108511M2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse IgG2b kappa

Immunogen CD85j (LILRB1, ILT2, LIR-1)

Clone GHI/75

Conjugate PE

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PE under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PE

Excitation Wavelength 566 nm

Emission Wavelength 574 nm

Applications

The GHI/75 monoclonal antibody recognizes human CD85j, a 110 kD member of the ILT/LIR family commonly found on the surface of natural killer cells and T cells. CD85j plays a role in important cellular pathways, in particular, the Fc receptor mediated inhibitory signaling pathway and immune response-inhibiting cell surface receptor signaling pathway. Moreover, it has been closely linked to critical biological processes like response to virus, especially defense response to virus. In some organisms, CD85j is a negative regulator of transforming growth factor-beta secretion, represses natural killer cell mediated cytotoxicity and inhibits dendritic cell apoptotic process. From a research standpoint, it is of biological interest due to its association with critical macromolecules/ligands. CD85j is a relatively rare antibody target, with fewer than 300 publications in the last decade. Even still, CD85j is frequently used in flow cytometry applications as a phenotypic marker for differentiation of

cell types, specifically in the study of immunology. This antibody was purified through affinity chromatography and conjugated to PE (ex/em = 566/574 nm). It is compatible with the 561 nm laser and 583/24 nm bandpass filter (for example, as in the Luminex Amnis CellStream).