

PerCP Anti-human CD25 Antibody *HI25a*

Catalog number: 102501T0, 102501T1, 102501T2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse IgG1

Immunogen CD25 (IL-2Rα, p55, TAC antigen)

Clone HI25a

Conjugate PerCP

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PerCP under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PerCP

Excitation Wavelength 477 nm

Emission Wavelength 678 nm

Applications

HI25a is an anti-human monoclonal antibody that is specific for the CD25 antigen. CD25 (sometimes called IL2RA) is a 55 kD transmembrane protein that is found on the surface of cells such as T cells, macrophages, B cells and NK cells. In certain organisms, CD25 is involved in the positive regulation of activated T cell proliferation, is a negative regulator of T cell proliferation and plays a role in the upregulation of T cell differentiation. Additionally, it is a component of important cellular pathways, for example, the cytokine-mediated signaling pathway, interleukin-2-mediated signaling pathway and Notch signaling pathway. From a research standpoint, it is of biological interest due to its association with key macromolecules/ligands like IL-2. CD25 is a very popular antibody target, with over 40000 publications in the last decade. CD25 has a variety of applications in immunology research, frequently serving as a phenotypic marker for differentiating cell types in flow

cytometric applications. This antibody was purified through affinity chromatography and conjugated to PerCP (ex/em = 477/678 nm). It is compatible with the 488 nm laser and 667/30 nm bandpass filter (for example, as in the Agilent Technologies NovoCyte Advanteon).