

PerCP Anti-human CD3 Antibody *HIT3a*

Catalog number: 100301T0, 100301T1, 100301T2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse IgG2a

Immunogen CD3e (T3E)

Clone HIT3a

Conjugate PerCP

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PerCP under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PerCP

Excitation Wavelength 477 nm

Emission Wavelength 678 nm

Applications

HIT3a is an anti-human monoclonal antibody that recognizes the CD3e antigen. CD3e (sometimes referred to as T cell antigen receptor complex or T3E) is a 20 kD member of the Ig superfamily that is found on the surface of cells like T cells. CD3 acts in essential cellular pathways, namely, the G protein-coupled receptor signaling pathway, apoptotic signaling pathway and T cell receptor signaling pathway. In addition, in certain organisms, it positively regulates T cell anergy, acts to positively regulate cell-matrix adhesion and is involved in the positive regulation of calcium-mediated signaling. From a research standpoint, it is of biological interest due to its association with essential macromolecules/ligands such as TCR. CD3 is a very popular antibody target, with over 80000 publications in the last decade. CD3e is typically used in flow cytometry applications as a phenotypic marker for differentiation of cell types, especially in the study of immunology. This antibody was purified through

affinity chromatography and conjugated to PerCP (ex/em = 477/678 nm). It is compatible with the 488 nm laser and 693/37 nm bandpass filter (for example, as in the Miltenyi Biotec MACSQuant Analyzer 10).	