

PerCP Anti-human CD3 Antibody *OKT-3*

Catalog number: 100341T0, 100341T1, 100341T2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse igg2a, κ

Immunogen CD3e (T3E)

Clone OKT-3

Conjugate PerCP

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PerCP under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PerCP

Excitation Wavelength 477 nm

Emission Wavelength 678 nm

Applications

OKT-3 is an anti-human monoclonal antibody that targets the CD3e antigen. CD3e (alternatively called T cell antigen receptor complex or TCRE) is a 20 kD member of the Ig superfamily that is located on the surface of cells like T cells. CD3 is a member of important cellular pathways, in particular, the cell surface receptor signaling pathway, T cell receptor signaling pathway and negative regulation of smoothened signaling pathway. Furthermore, in certain organisms, it positively regulates calcium-mediated signaling, upregulates peptidyl-tyrosine phosphorylation and enhances cell-matrix adhesion. From a research standpoint, it is of biological interest due to its association with vital macromolecules/ligands such as TCR. CD3 is a very popular antibody target, with over 80000 publications in the last decade. CD3e is vital to immunology research, typically serving as a phenotypic marker for differentiating cell types in flow cytometric applications. This antibody was

purified through affinity chromatography and conjugated to PerCP (ex/em = 477/678 nm). It is compatible with the 488 nm laser and 693/37 nm bandpass filter (for example, as in the Miltenyi Biotec MACSQuant Analyzer 10).