

PerCP Anti-human CD47 Antibody *HI172*

Catalog number: 104711T0, 104711T1, 104711T2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Human

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse IgG1

Immunogen CD47 (gp42, IAP, neurophilin, MER6, Integrin associated protein)

Clone HI172

Conjugate PerCP

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PerCP under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PerCP

Excitation Wavelength 477 nm

Emission Wavelength 678 nm

Applications

HI172 is an anti-human monoclonal antibody that is specific for the CD47 antigen. CD47 (sometimes called Integrin associated protein) is a 42 - 52 kD multi-pass membrane protein that is found on the surface of cells such as granulocytes, platelets, endothelial cells and B cells. CD47 acts in critical cellular pathways, in particular, the negative regulation of Fc-gamma receptor signaling pathway involved in phagocytosis and integrin-mediated signaling pathway. In addition, in certain organisms, it downregulates Fc-gamma receptor signaling pathway involved in phagocytosis, upregulates T cell activation and acts to positively regulate inflammatory response. From a research standpoint, it is of biological interest due to its association with key macromolecules/ligands like SIRP, Thrombospondin and CD61. CD47 is a fairly uncommon antibody target, with a little more than 5000 publications in the last decade. Even still, CD47 is often used in flow cytometry applications as a phenotypic marker for

differentiation of cell types, particular conjugated to PerCP (ex/em = 477/67 FACSVerse™).	ly in the study of immunol 8 nm). It is compatible wit	logy. This antibody was h the 488 nm laser and	s purified through affinity of 700/54 nm bandpass filte	chromatography and er (for example, as in the BD