

PerCP Anti-mouse/human/rat CD47 Antibody *MIAP410*

Catalog number: 104731V0, 104731V1, 104731V2

Unit size: 25 tests, 100 tests, 500 tests

Product Details

Storage Conditions 2-8°C with minimized light exposure. Do not freeze.

Expiration Date 12 months upon receiving

Concentration 0.1 mg/mL

Formulation Phosphate-buffered saline (PBS, pH 7.2), 0.09% sodium azide, 0.2% (w/v) BSA

Antibody Properties

Species Reactivity Mouse, human, rat

Class Primary

Clonality Monoclonal

Host Mouse

Isotype Mouse igg1, κ

Immunogen CD47 (gp42, IAP, neurophilin, MER6, Integrin associated protein)

Clone MIAP410

Conjugate PerCP

Biological Properties

Preparation Antibody purified by affinity chromatography and then conjugated with PerCP under optimal conditions

Application Flow Cytometry (FACS)

Spectral Properties

Conjugate PerCP

Excitation Wavelength 477 nm

Emission Wavelength 678 nm

Applications

The MIAP410 monoclonal antibody binds with mouse/human/rat CD47, a 42 - 52 kD transmembrane protein frequently located on the surface of b cells, thymocytes and epithelial cells. In many organisms, CD47 acts to positively regulate phagocytosis, is a promoter of cell population proliferation and enhances T cell activation. Also, it is involved with vital cellular pathways, for instance, the negative regulation of Fc-gamma receptor signaling pathway involved in phagocytosis and integrin-mediated signaling pathway. From a research standpoint, it is of biological interest due to its association with critical macromolecules/ligands like Thrombospondin, SIRP and CD61. CD47 is a fairly uncommon antibody target, with a little more than 5000 publications in the last decade. Even still, CD47 has a variety of applications in immunology research, often

chromatography and conjugated to PerCP (ex/em = $477/678$ nm). It is compatible with the 488 nm laser and $700/54$ nm bandpass filter (for example, as in the BD FACSMelody TM).

serving as a phenotypic marker for differentiating cell types in flow cytometric applications. This antibody was purified through affinity