AmpliteTM Colorimetric Aspartate Aminotransferase Assay Kit **Blue Color**

Ordering Information	Storage Conditions	Instrument Platform
Product Number: 13801 (200 assays)	Keep in freezer and avoid exposure to light	Absorbance microplate readers

Introduction

Aspartate aminotransferase (AST), also called serum glutamic oxaloacetic transaminase (GOT), is a member of transferase family. It catalyzes the reversible transfer of an α -amino group between aspartate and glutamate, and is an important enzyme in amino acid metabolism. AST is found in many body tissues such as liver, heart, muscle, kidneys, brain. In healthy subjects, serum AST levels are low. However, when cells are damaged, such as acute and chronic hepatitis, obstructive jaundice, carcinoma of liver, myocardial infarction, AST may leak into the blood stream and the AST levels are significantly elevated. Therefore, determination of serum AST level has great clinical and diagnostic significance.

AmpliteTM Colorimetric Aspartate Aminotransferase (AST) assay kit provides a quick and sensitive method for the measurement of AST in various biological samples. Aspartate transaminase catalyzes the reaction of aspartate and α -ketoglutarate to oxaloacetate and glutamate:

Aspartate (Asp) + α-ketoglutarate ≠ oxaloacetate + glutamate (Glu)

The product L-glutamate is measured by the generation of a blue color product through an enzyme coupled reaction cycle. The signal can be read by an absorbance microplate reader at the absorbance ratio of A_{570nm} to A_{610nm} . The assay is robust, and can be readily adapted for a wide variety of applications.

Kit Components

Components	Amount	Storage Conditions
Component A: AST Enzyme Mixture	1 bottle (lyophilized powder)	-20°C
Component B: AST Assay Buffer	1 bottle (10 mL)	-20°C
Component C: NAD	1 vial	-20°C
Component D: AST Positive Control	1 vial (10 U, lyophilized powder)	-20°C

Assay Protocol for One 96-Well Plate

Brief Summary

Prepare AST reaction mixture (50 μ L) \rightarrow Add AST standards or test samples (50 μ L) \rightarrow Incubate at 37°C for 30-120 min \rightarrow Monitor absorbance increase at the absorbance ratio of A570nm /A610nm

Note: Thaw Component A and B at room temperature before starting the experiment.

1. Prepare serial dilutions of AST standard:

- 1.1 Add 100 µL DPBS Buffer to AST Positive Control (Component D) to make 100 U/mL AST standard solution. Note: The unused AST Positive Control (Component D) should be divided into single use aliquots and stored at -20°C.
- 1.2 Add 5 μ L of 100 U/mL AST standard solution (from Step 1.1) into 997 μ L DPBS buffer with 0.1% BSA to generate 500 mU/mL AST standard solution.

- 1.3 Take 400 μ L of 500 mU/mL AST standard solution to perform 1:2 serial dilutions to get 250, 125, 62.5, 31.25, 15.6, 7.8 and 0 mU/mL serial dilutions of AST standard.
- 1.4 Add serial dilutions of AST standard and AST containing test samples into a white/clear bottom 96-well microplate as described in Tables 1 and 2.

Note: Dilute the test samples to the concentration range in DPBS buffer with 0.1% BSA if needed.

Table 1 Layout of AST standards and test samples in a white/clear bottom 96-well microplate

BL	BL	TS	TS	 			
AST1	AST1			 			
AST2	AST2						
AST3	AST3						
AST4	AST4						
AST5	AST5						
AST6	AST6						
AST7	AST7						

Note: AST= AST Standards, BL=Blank Control, TS=Test Samples.

Table 2 Reagent composition for each well

AST Standard	Blank Control	Test Sample
Serial Dilutions*: 50 μL	DPBS with 0.1% BSA: 50 μL	50 μL

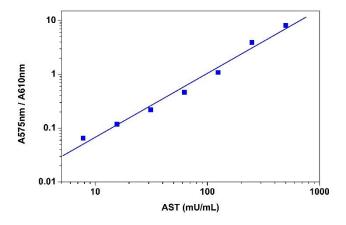
Note1: Add the serially diluted AST standards from 7.8 mU/mL to 500 mU/mL into wells from AST1 to AST 7 in duplicate. Note 2: The AST standards are for positive control only, and should not be relied on as a quantitation standard for enzyme activity.

2. Prepare AST assay mixture:

- 2.1 Add 100 µL of ddH₂O into the vial of NAD (Component C) to have 100X NAD solution.
- 2.2 Add 10 mL of AST Assay Buffer (Component B) into the bottle of AST Enzyme Mixture (Component A), and mix well.
- 2.3 Add whole vial of 100X NAD solution (from Step 2.1) into the AST Enzyme Mixture solution (from Step 2.2) to have AST assay mixture.

Note1: This AST assay mixture is enough for two 96-well plates. It is unstable at room temperature, and should be used promptly within 2 hours and avoid exposure to light.

Note2: Alternatively, one can make a 50X of AST Enzyme Mixture stock solution by adding $200 \mu L$ of H_2O into the bottle of Component A, and then prepare the AST assay mixture by mix the stock solution with assay buffer (Component B) and 100X NAD solution proportionally. Aliquot and store the unused 50X AST Enzyme Mixture stock solution and 100X NAD solution at $-20^{\circ}C$, and avoid freeze-thaw cycles.


3. Run AST assay:

- 3.1 Add 50 µL of AST assay mixture (from Step 2.3) to each well of AST standard, blank control, and test samples (see Step 1.4) to make the total AST assay volume of 100 µL/well.

 Note: For a 384-well plate, add 25 µL of sample and 25 µL of AST assay mixture into each well.
- 3.2 Incubate the reaction at 37°C for 30-120 minutes, protected from light. *Note: The background of Blank Control increases with time and temperature.*
- 3.3 Monitor the absorbance increase with an absorbance plate reader at the absorbance ratio of A_{570nm} / A_{610nm} .

Data Analysis

The absorbance in blank wells (with the DPBS buffer with 0.1% BSA only) is used as a control, and is subtracted from the values for those wells with the AST reactions. An AST standard curve is shown in Figure 1. Note: The absorbance background increases with time, thus it is important to subtract the intensity value of the blank wells from that of each data point.

Figure 1. AST dose response was measured with AmpliteTM Colorimetric Aspartate Aminotransferase (AST) Assay Kit in a 96-well clear bottom plate using a SpectraMax microplate reader (Molecular Devices).

References

- 1. Hayashi H, Mizuguchi H, Miyahara I, Nakajima Y, Hirotsu K, Kagamiyama H (2003). "Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis". *J Biol Chem* 278 (11): 9481–9488.
- 2. Gaze DC (2007). "The role of existing and novel cardiac biomarkers for cardioprotection". *Curr. Opin. Invest. Drugs* **8** (9): 711–7.
- 3. Berg, JM; Tymoczko, JL; Stryer, L (2006). Biochemistry. W.H. Freeman. pp. 656–660.
- 4. Nalpas B, Vassault A, Charpin S, Lacour B, Berthelot P (1986). "Serum mitochondrial aspartate aminotransferase as a marker of chronic alcoholism: diagnostic value and interpretation in a liver unit". *Hepatology* 6 (4): 608–614.
- 5. Almo SC, Smith DL, Danishefsky AT, Ringe D (March 1994). "The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli". *Protein Eng.* 7 (3): 405–412.

Warning: This kit is only sold to our authorized distributors and end users. Neither resale nor transfer to a third party is allowed without written permission from AAT Bioquest®. Chemical analysis of the kit components is strictly prohibited. Please call us at 408-733-1055 or e-mail us at info@aatbio.com if you