

Amplite® Fluorimetric Neutrophil Elastase Activity Assay Kit

Catalog number: 11327
Unit size: 100 Tests

Component	Storage	Amount (Cat No. 11327)
Component A: NE Substrate	Freeze (< -15 °C), Minimize light exposure	50 µL
Component B: NE Enzyme Standard	Freeze (< -15 °C)	1 µg
Component C: NE Dilution Buffer	Freeze (< -15 °C)	5 mL
Component D: NE Assay Buffer	Freeze (< -15 °C)	5 mL

OVERVIEW

The Amplite® Fluorimetric Neutrophil Elastase Activity Assay Kit provides a robust and accurate method for quantifying neutrophil elastase (NE) activity. This assay is based on the proteolytic cleavage of a synthetic substrate by NE, which can be quantified at Ex/Em=360/470 nm. It offers a direct measure of enzymatic activity proportional to the NE present in the samples. The kit's straightforward protocol is optimized for the sensitive detection of NE in blood and plasma samples and is suitable for screening and characterizing chemotactic agents triggering neutrophil stimulation. Neutrophil elastase, also known as leukocyte elastase, ELANE, ELA2, elastase 2, neutrophil, elaszym, serine elastase, subtype human leukocyte elastase (HLE) is a cytotoxic Serine Protease with a broad substrate specificity. Azurophil granules of neutrophil store NE and release them in response to multiple stimuli like pathogens, immune complexes, or chemotactic agents such as PMA causing degradation of a range of extracellular matrix proteins, including fibronectin, laminin, proteoglycans, collagens, and elastin. NE hydrolysis accounts for approximately 80% of the total protease hydrolysis activity in the human body. Disease implications of NE include cystic fibrosis, COPD, lung emphysema, rheumatoid arthritis, and adult respiratory distress syndrome. NE has also been associated with lung injury seen in COVID-19.

AT A GLANCE

Important Note

Thaw all the kit components at room temperature before starting the experiment.

1. Prepare the test samples, and the serially diluted NE standards (50 µL).
2. Add the NE working solution (50 µL).
3. Incubate for 10-20 minutes at 37 °C.
4. Monitor the fluorescence intensity at Ex/Em=360/470 nm, cutoff=430 nm.

KEY PARAMETERS

Fluorescence microplate reader

Cutoff	430 nm
Emission	470 nm
Excitation	360 nm
Recommended plate	Solid black

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid

repeated freeze-thaw cycles

NE Standard Stock Solution

1. Add 10 µL of NE Dilution Buffer (Component C) to prepare a 100 µg/mL stock solution. Mix thoroughly by pipetting up and down.

Note: Store the stock solution at -80 °C, avoid repeated freeze/thaw cycles.

PREPARATION OF STANDARD SOLUTIONS

For convenience, use the Serial Dilution Planner:
<https://www.aatbio.com/tools/serial-dilution/11327>

NE Standard

Add 3 µL of the 100 µg/mL NE standard solution to 297 µL of NE Dilution Buffer (Component C) to prepare a 1000 ng/mL NE solution (NE7). Then, take 100 µL of NE7 and perform 1:3 serial dilutions in NE Dilution Buffer (Component C) to create NE standards ranging from NE6 to NE1.

PREPARATION OF WORKING SOLUTION

NE Working Solution

1. To prepare the NE working solution, add 50 µL of NE Substrate (100X) (Component A) to 5 mL of NE Assay Buffer (Component D) and mix thoroughly.

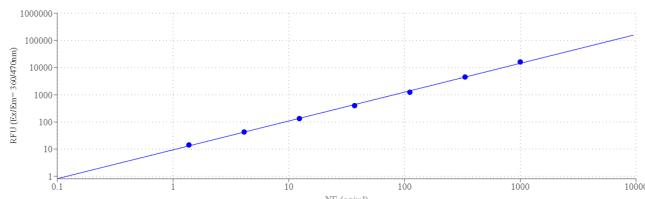
Note: Prepare the NE working solution fresh before each experiment and protect it from light. A 5 mL solution is sufficient for 100 tests. Prepare the NE working solution in the required amount, adjusted proportionally to the number of tests needed.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of NE standards and test samples in a 96-well solid black microplate. (STD = NE Standards (STD1-STD7, 4.1 to 1000 ng/mL), BL = Blank Control, TS = Test Samples)

BL	BL	TS	TS
STD 1	STD 1
STD 2	STD 2
STD 3	STD 3		
STD 4	STD 4		
STD 5	STD 5		
STD 6	STD 6		
STD 7	STD 7		

Table 2. Reagent composition for each well.


Well	Volume	Reagent
STD 1- STD 7	50 μ L	Serial Dilutions (4.1 to 1000 ng/mL)
BL	50 μ L	NE Dilution Buffer (Component C)
TS	50 μ L	Test Sample

1. Prepare the NE standards (STD1-STD7), blank controls (BL), and test samples (TS) as outlined in Tables 1 and 2. When using a 384-well plate, add 25 μ L of reagent per well instead of 50 μ L.
2. Add 50 μ L of NE Working Solution to each well for NE standards, blank controls, and test samples. For a 384-well plate, add 25 μ L of NE Working Solution to each well.
3. Incubate for 10-20 minutes at 37 °C, protected from light.
4. Monitor the fluorescence intensity with a fluorescence microplate reader at Ex/Em= 360/470 nm (Cutoff = 430 nm).

EXAMPLE DATA ANALYSIS AND FIGURES

The fluorescence reading in the blank wells (containing only the assay buffer) serves as a control. These readings are subtracted from the values obtained in wells containing NE standards and test samples. The standard curve for NE is shown in Figure 1. To calculate the NE concentrations in the samples using this standard curve, we recommend using the Online Linear Regression Calculator available at:

<https://www.aatbio.com/tools/linear-logarithmic-semi-log-regression-online-calculator>

Figure 1. The dose response of neutrophil elastase (NE) was measured using the Amplate® Fluorimetric Neutrophil Elastase Assay Kit. The assay was conducted on a 96-well solid black microplate, utilizing a Gemini microplate reader (Molecular Devices) with Ex/Em = 360/470 nm, Cutoff = 430 nm.

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.