

Cell Meter®; Intracellular Colorimetric Lipid Peroxidation (MDA) Assay Kit

 Catalog number: 15991
 Unit size: 200 tests

Component	Storage	Amount (Cat No. 15991)
Component A: MDA Blue™	Freeze (< -15 °C), Minimize light exposure	1 vial
Component B: Dilution Buffer	Freeze (< -15 °C), Minimize light exposure	1 bottle (10 mL)
Component C: MDA Standard	Freeze (< -15 °C), Minimize light exposure	1 vial (lyophilized)
Component D: Reaction Solution	Freeze (< -15 °C), Minimize light exposure	1 bottle (10 mL)

OVERVIEW

Lipid peroxidation is characterized by the oxidative degradation of unsaturated fatty acids, phospholipids, glycolipids, cholesterol esters and cholesterol. Malondialdehyde (MDA) is one of the most commonly used biomarkers for lipid peroxidation. Measurement of MDA has historically relied on a reaction with thiobarbituric acid (TBA) to generate a product that can be measured colorimetrically or fluorimetrically. However, TBA assay has quite a few limitations. (1). The reaction is not specific to MDA. (2). TBA-MDA reaction need be run under acidic conditions. (3). The assays need be run under high temperature, commonly at 90-100 °C. The commercial TBA-based MDA assays are extremely tedious to run due to these limitations. This Cell Meter™ Colorimetric Lipid Peroxidation (MDA) Quantitation Kit offers the most rapid and convenient method to measure MDA without the TBARS heating steps. MDA Blue™ reacts with MDA to generate a blue color product which is measured at 695 nm with absorbance microplate reader. This assay is very fast and specific to MDA with little interference from other aldehydes.

AT A GLANCE
Protocol Summary

1. Prepare and add MDA standards and/or test samples (50 µL)
2. Prepare and add MDA Blue™ (10 µL)
3. Incubate at room temperature for 10 - 30 minutes
4. Add reaction solution (40 µL)
5. Monitor OD increase at 695 nm

Important Note

Thaw all the kit components at room temperature before starting the experiment.

KEY PARAMETERS
Absorbance microplate reader

Absorbance	695 nm
Recommended plate	Clear bottom

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

MDA standard stock solution (100 mM)

Add 100 µL of ddH₂O into MDA Standard (Component C) and mix them well. **Note:** The unused MDA stock solution should be stored at -20 °C in single use aliquots.

PREPARATION OF STANDARD SOLUTIONS

For convenience, use the Serial Dilution Planner:
<https://www.aatbio.com/tools/serial-dilution/15991>

MDA standard

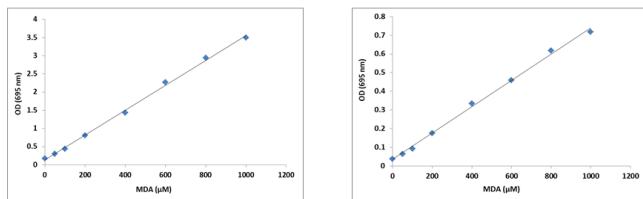
Add 10 µL of MDA standard (100 mM) into 990 µL of Dilution Buffer (Component B) to get MDA standard solution (1000 µM). Then perform serial dilutions in dilution buffer to get 800, 600, 400, 200, 100, 50 and 0 µM serially diluted MDA standards.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of MDA standards and test samples in a clear bottom 96-well microplate. MDA = MDA standard (MDA1-MDA7= 1000 to 50 µM); BL = blank control; TS = test sample.

BL	BL	TS	TS
MDA1	MDA1
MDA2	MDA2
MDA3	MDA3		
MDA4	MDA4		
MDA5	MDA5		
MDA6	MDA6		
MDA7	MDA7		

Table 2. Reagent composition for each well.


Well	Volume	Reagent
MDA1-MDA7	50 µL	Serial Dilution (1000 to 50 µM)
BL	50 µL	Dilution Buffer (Component B)
TS	50 µL	Test Sample

MDA assay

1. Add 50 µL of MDA standard, blank control, and test samples to clear bottom 96-well microplate (As shown in Table 1 and Table 2).
2. Add 10 µL/well of MDA Blue™ (Component A) into each well of MDA standard, blank control and test samples. **Note:** For a 384-well plate, add 25 µL of sample, 5 µL of MDA Blue™ solution into each well. Note: Please aliquot Component A into single use size and store unused at -20 °C and avoid light.
3. Incubate the reaction at room temperature for 10 - 30 minutes, protected from light.
4. Add 40 µL of Reaction Solution (Component D) to make the total assay volume of 100 µL/well. **Note:** For a 384-well plate, add 20 µL of Reaction Solution (Component D) to make the total assay volume of 50 µL/well.
5. Monitor absorbance increase with an absorbance plate reader with path-check correction at OD of 695~700 nm.

EXAMPLE DATA ANALYSIS AND FIGURES

Placeholder for image details

Figure 1. MDA dose response was measured with Amplate® Colorimetric Lipid Peroxidation (MDA) Quantitation Kit on a 96-well clear bottom microplate using a SpectraMax microplate reader (Molecular Devices). (Pathcheck on (Left image); Pathcheck off (Right image))

DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.