

**Fura-FF, AM [Fura-2FF, AM] \*CAS 348079-12-9\***

Catalog number: 21027  
Unit size: 10x50 ug

| Component                                    | Storage                                    | Amount (Cat No. 21027) |
|----------------------------------------------|--------------------------------------------|------------------------|
| Fura-FF, AM [Fura-2FF, AM] *CAS 348079-12-9* | Freeze (< -15 °C), Minimize light exposure | 10x50 ug               |

**OVERVIEW**

Among the ratiometric calcium indicators, Fura-2 and Indo-1 are most commonly used. Fura-2 is excitation-ratioable while Indo-1 is emission-ratioable. Fura-2 is preferred for ratio-imaging microscopy, in which it is more practical to change excitation wavelengths than emission wavelengths. Upon binding Ca<sup>2+</sup>, Fura-2 exhibits an absorption shift that can be observed by scanning the excitation spectrum between 300 and 400 nm, while monitoring the emission at ~510 nm. The cell-permeant Fura-2FF AM is an analog of Fura-2 AM with much lower calcium binding affinity, K<sub>d</sub> ~10 μM. This AM ester form can be loaded into live cells noninvasively.

**KEY PARAMETERS**
**Fluorescence microscope**

|                   |                         |
|-------------------|-------------------------|
| Emission          | Fura 2 filter set       |
| Excitation        | Fura 2 filter set       |
| Recommended plate | Black wall/clear bottom |

**Fluorescence microplate reader**

|                             |                                               |
|-----------------------------|-----------------------------------------------|
| Cutoff                      | 475                                           |
| Emission                    | 510                                           |
| Excitation                  | 340, 380                                      |
| Recommended plate           | Black wall/clear bottom                       |
| Instrument specification(s) | Bottom read mode/Programmable liquid handling |

**PREPARATION OF STOCK SOLUTIONS**

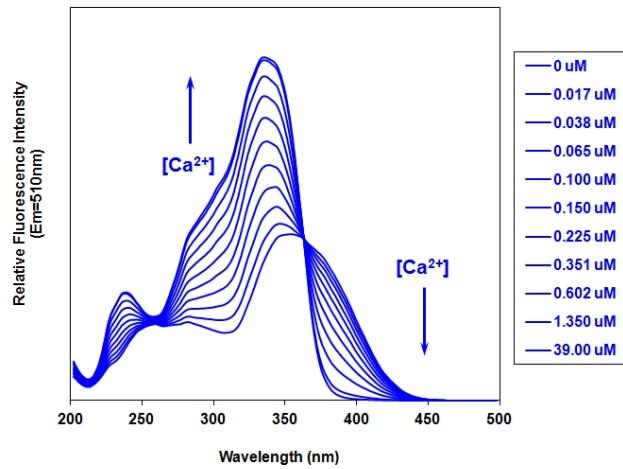
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

**Fura-FF AM Stock Solution**

1. Prepare a 2 to 5 mM stock solution of Fura-FF AM in high-quality, anhydrous DMSO.

**PREPARATION OF WORKING SOLUTION**
**Fura-FF AM Working Solution**

1. On the day of the experiment, either dissolve Fura-FF AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.
2. Prepare a 2 to 20 μM Fura-FF AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Fura-FF AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.


**Note:** The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Fura-FF AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

**Note:** If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of [ReadiUse™ Probenecid products](#), including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.

**SAMPLE EXPERIMENTAL PROTOCOL**

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

1. Prepare cells in growth medium overnight.
2. On the next day, add 1X Fura-FF AM working solution to your cell plate.
- Note:** If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.
3. Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.
- Note:** Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.
4. Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
5. Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a Fura 2 filter set or a fluorescence plate reader containing a programmable liquid handling system such as a FlexStation, at Ex/Em<sub>1</sub> = 340/510 nm cutoff 475 nm and Ex/Em<sub>2</sub> = 380/510 nm cutoff 475 nm.

**EXAMPLE DATA ANALYSIS AND FIGURES**


**Figure 1.** Fluorescence excitation spectra of Fura-FF in the presence of 0 to 39  $\mu$ M free  $\text{Ca}^{2+}$ .

**DISCLAIMER**

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.