

## RuFluor™ succinimidyl ester

Catalog number: 1520  
Unit size: 1 mg

| Component                   | Storage                                    | Amount        |
|-----------------------------|--------------------------------------------|---------------|
| RuFluor™ succinimidyl ester | Freeze (< -15 °C), Minimize light exposure | 1 vial (1 mg) |

### OVERVIEW

RuFluor™ succinimidyl ester is a highly water-soluble ruthenium complex that can be used in fluorescence polarization assays, time-resolved immunoassays, ECL immunoassays. Like other succinimidyl ester compounds, RuFluor™ succinimidyl ester label amines on biomolecules under mild conditions. The bioconjugates obtained from RuFluor™ succinimidyl ester are stable both chemically and photochemically. An electrochemiluminescence assays (ECL) is an antibody-based test designed to detect the presence of a biological target. In a typical ECL assay, the presence of an agent of interest creates a complex with two antibodies: one antibody is attached to a magnetic particle, the other antibody, in solution, is modified with a reporter molecule. The antigen/antibody complex is exposed to an electrode, which simultaneously attracts the magnetic bead and stimulates the detection molecule to emit light. The measurement of light is correlated with the presence of the specific antigen. ECL assays allow the detection of drugs and biomolecules in a wide range of molecular weights.

### PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

#### 1. Protein stock solution (Solution A)

Mix 100  $\mu$ L of a reaction buffer (e.g., 1 M sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900  $\mu$ L of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution. **Note:** The pH of the protein solution (Solution A) should be  $8.5 \pm 0.5$ . If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer. **Note:** The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation. **Note:** Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results. **Note:** The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.

#### 2. RuFluor™ succinimidyl ester stock solution (Solution B)

Add anhydrous DMSO into the vial of RuFluor™ succinimidyl ester to make a 10 mM stock solution. Mix well by pipetting or vortex. **Note:** Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.

### SAMPLE EXPERIMENTAL PROTOCOL

This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with RuFluor™ succinimidyl ester. You might need further optimization for your particular proteins. **Note:** Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.

### Run conjugation reaction

1. Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point: Add 5  $\mu$ L of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95  $\mu$ L of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD. **Note:** We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.

### Purify the conjugation

The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.

1. Prepare Sephadex G-25 column according to the manufacture instruction.
2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate. **Note:** For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses. **Note:** For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried.

### EXAMPLE DATA ANALYSIS AND FIGURES



Figure 1.

RuFluor™ succinimidyl ester is a highly water-soluble ruthenium complex that can be used in fluorescence polarization assays, time-resolved immunoassays, ECL immunoassays. Like other succinimidyl ester compounds, RuFluor™ succinimidyl ester label amines on biomolecules under mild conditions. The bioconjugates obtained from RuFluor™ succinimidyl ester are stable both chemically and photochemically.

### DISCLAIMER

AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email [info@aatbio.com](mailto:info@aatbio.com) if you have any questions.

