

iFluor® 647 acid

Catalog Number: 2909

Unit Size: 5 mg

Product Details

Storage Conditions	Freeze (< -15 °C), Minimize light exposure
Expiration Date	12 months upon receiving

Chemical Properties

Appearance	Solid blue
Molecular Weight	N/A
Soluble In	DMSO

Spectral Properties

Excitation Wavelength	656 nm
Emission Wavelength	670 nm

Applications

AAT Bioquest's iFluor® dyes are optimized for labeling proteins, particularly antibodies. These dyes are bright, photostable, and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555, and 633 nm). The iFluor® 647 family has spectral properties essentially identical to those of Cy5®. Compared to Cy5® probes, iFluor® 647 reagents have much stronger fluorescence and higher photostability. Their fluorescence is pH-independent from pH 3 to 11. These spectral characteristics make this new dye family an excellent alternative to Cy5® and Alexa Fluor® 647 (Cy5® and Alexa Fluor® are the trademarks of GE Health Care and Invitrogen).

iFluor® 647 acid is a non-reactive compound that can be employed as a reference standard in studies utilizing iFluor® 647 conjugates. It is also suitable for use as a control in confocal microscopy, immunocytochemistry (ICC), high-content screening (HCS), flow cytometry, and live cell imaging applications. Furthermore, it can be utilized in the synthesis of activated esters and STP and can be coupled to hydrazines, hydroxylamines, or amines in aqueous solutions using water-soluble carbodiimides (e.g., EDAC). This allows for the conjugation of the dye to amino-containing molecules, such as proteins, antibodies, amine-modified oligonucleotides, and peptides.