

Introduction

The covalent conjugation of a large biomolecule to another macromolecule, such as an antibody to an enzyme, or an enzyme to DNA is an important task for researchers. There are a few methods available for crosslinking two biomolecules. One common method is to use a small crosslinker (such as Sulfo-SMCC). SMCC has an amine-reactive NHS ester group at one end to react with free amines (-NH₂) of a protein, and a sulfhydryl-reactive maleimide group at the other end to react with a thiol group (-SH) of biomolecule to be conjugated. SMCC-modified linker on a protein is extremely unstable and often self-reactive since proteins often contain both free amines and thiol groups, resulting in a significant amount of homo-crosslinking. In addition, the quantitation of the number of maleimide groups on a protein is quite tedious, and it is difficult to set the suitable molar ratio of two biomolecules to be linked in the reaction for the desirable function and coupling efficiency.

A convenient and effective crosslinking method has been developed to link two biomolecules with a high conjugation yield. This method uses two unique crosslinkers (BuccutiteTM MTA and BuccutiteTM FOL). The crosslinkers of MTA and FOL on proteins are easy to control and quantify. Following a desalting column to remove free linkers, and the BuccutiteTMMTA activated antibody and BuccutiteTM FOL modified protein readily react upon mixing under a mild condition. The purification is essentially unnecessary, and there is no homo-crosslinking of each biomolecule in the reaction.

- Jackson Immuno Research Laboratories; HRP is from Calzyme, Tubulin mouse mAb is from Life Technologies.
- **Purification Columns:** All purification columns are Bio-Spin size exclusion columns from Bio-Rad.
- Cells Imaging: HeLa cells are fixed with 4% formaldehyde, and stained with Mouse Anti-tubulin, and then stained with the HRP-Goat–Anti-Mouse IgG conjugate. Images were taken with Olympus IX71 fluorescence microscope.

A New Protein Crosslinking Method for Labeling and Modifying Antibodies Qin Zhao, Haitao Guo, Xing Han, Jinfang Liao and Zhenjun Diwu AAT Bioquest, Inc., 520 Mercury Drive, Sunnyvale, CA 94085

- with FOL (1hour).

BuccutiteTM HRP-IgG Conjugate for ELISA Assays

Figure 2. Direct ELISA curves were generated using the HRP- goat-anti-mouse IgG conjugate prepared with Buccutite[™] crosslinking technology (in red) and with SMCC method (in blue). Mouse monoclonal antibody (100 ng) was coated on a 96well plate, GAM IgG-HRP conjugate was diluted in a 2-fold dilution series using the standard method. ABTS substrate solution (#11001, AAT Bioquest) was used to detect the immobilized mouse IgG with 30 min incubation and read at 405 nm.

BuccutiteTM IgG-RPE Conjugate for cell imaging

Figure 3. Tubulins were imaged with RPEgoat-anti-mouse IgG conjugate in HeLa cells. Tubulins were stained using mouse anti- α -tubulin antibody, and visualized with red fluorescent RPE-goat-anti-mouse IgG conjugate prepared by BuccutiteTM crosslinking technology as described above.

Summary

• Linkers are highly stable. The BuccutiteTM linker-activated macromolecules are

• Conjugation conditions are extremely mild and robust. BuccutiteTM conjugations can be run in a broad range of pH, concentration and temperature. No

• **High yield:** BuccutiteTM conjugation can be finished within 1 hour. BuccutiteTM conjugation gives much higher yield than other existing methods under the same conditions. The conjugation can be run at extremely low concentration.